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We study the rate of strong uniform approximation to continuous functions
Flx, v), 2n-periodic in each variable, by the rectangular partial sums of their double
Fourier series. As special cases, we deduce strong approximation rates to functions
in the Lipschitz classes Lip{«, f) and Zygmund classes Z{z, §). where o, (0, 1].
We also obtain the rates of strong uniform approximation to the conjugate func-
tions ft10 F1®1 and F(.1' by the rectangular partial sums of the corresponding
conjugate series. With two exceptions, all rates arc shown to be the best possible.
211990 Academic Press, Inc.

1. INTRODUCTION

Let f(x, y) be a complex-valued function, 2n-periodic in each variable
and integrable over the two-dimensional torus {—=n, n]x{—mn 73] We
remind the reader that the double Fourier series of f is defined by

S[f]: Z 2 Cl_kei;rjx'w'*k_t,” {1‘1;

J=— k= -—x

where

| ™ .
C]kz——-j J Flu, v)e "R dy dy, (1.2}
dn )z’ n
23
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24 MORICZ AND SHI

We consider the symmetric rectangular partial sums

m n
Sl i, Y=Y Y VTR (mn=0,1,..)

j=—-—m k= —n

of series (1.1). It follows from (1.2) that

1 AT s
Soul S X, ¥) = 2j j fix+u, y+v)D,(u) D,(v)dudv, (1.3)

T
where D, (u) and D,(v) are the Dirichlet kernels in terms of u and v,
respectively. 5

For the definition of the three conjugate series S-[f], SOV[f],

SUHT £ as well as the corresponding conjugate functions 7“%(x, y),
FO(x, »), 74U (x, y), we refer to our previous paper [6].

2. MobpuLl oF CONTINUITY AND SMOOTHNESS

From now on, let f(x, y) be a continuous function, 2zn-periodic in each
variable, in symbols f € C5, 55

In the sequel, 6, and J, denote nonnegative real numbers. The (total)
modulus of continuity of f'is defined by

@,(f,0,,0;)= sup  max |f(x+u y+v)—f(x, y)l,

il <o ivl <6 (9 3)
while
w1 ([0)=0,(£5,0) and o, (f ) =w,(f,0,3,)

are called the partial moduli of continuity. For «, B¢ (0, 1], the Lipschitz
class Lip(a, B) is defined by

Lip(aa ﬂ) = {fe Clnx Zn: wl,x(f; 61 ) = @{6[1!} and
w, (1, 0,)=C{85}}.
The (total) modulus of symmetric smoothness of f is defined by

(l)z(f; 517 5?_) = Sup max l(px.y(u’ U)l,

lul < 81 lvl < 62 (% 07)
where
@ vy =3[ flx+u p+0)+ flx—u, y+0v)
T fxtu, y—o)F flx—u y—v)—4f(x, »)],  (21)
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while

w, {f;01)=wslf, 6, 0) and W, »(f: 3y)=w( £, 0, 85)

class Z{a, B) is defined by
Z(.’X’, ﬁ) = {fe CEanrz: wZ,x(.f; 51): @{5?} and ('UZ,_V(./T: 52} = Cﬂ\ {5{;}}

As is known, Lip(a, §)= Z(«, f) if max{a, f) <! and Lip(a. 8) = Z{=, B} if
max{a, f} = 1.

Remark 1. Let w denote either w, or w,. Then, obviously,
max{a)x(f; 51)9 wy(./; 52)} g (U(j; 6t 3 5_’_)
<o f 0+, 02).

o

A
[N
[\

In [8], another modulus of smoothness of fis defined by

w*{(fdy,0,)

= sup max 3 |f(x+u y+o)+ flx—u, y—v)—21(x »)l.

luf < Op.jr] <62 1X-F)

The deficiency of this definition is that the second inequality in {2.2) is no
longer true if w is replaced by w*. In fact, putting f(x, y)=x) we can sce
that

U)*(ﬂ 513 52)251 52’
while
WL (i 0)=w*(f,06,,0)=0 and G)z_}(/f: S,)=w*(f,0,0,)=0.

On the other hand, Definition (2.1) is motivated by the representation

Sl % )= 06 V=23 | [ 0. (10 0) Dofw) D,(v) du e,
" Jo Yo ’

which follows from (1.3).

3. MAIN RESULTS: APPROXIMATION BY FOURIER SERIES

Let y, > — 1 be real numbers. We shall consider the Cesaro means

yo 1 < “ vt 5
T 16 V)= Y X AL A sl x )

min j=0 k=0
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of series (1.1), where

Al =

y+m __(y+m)(y+m—1)---()’+1)
( m >— m'

for m=1, 2, .. and 47, =1 for m=0.
The strong approximation operator H? (f, p) is defined by

mn

1 m n 1ip
TS ) ~{ s & % A Ak lsalhn )= S i)

nj=0 k=0

where p > 0. By Holder’s inequality, /£, p, x, ¥) is nondecreasing in p,

and for p=1 clearly

Tk D) =Nai S y) = flx YIS HLf L %, ). (3.1)

H’HT(

Denote by E,,.(f) the best uniform approximation to f by two-dimen-
sional trigonometric polynomials z,,,(x, ¥) of degree < m with respect to x
and of degree < » with respect to y,

E,(f)=inf [[t,,(x, y)—f(x p),

\lnmr

where |- is the usual maximum norm |[f-{,, ., henceforth.

The following theorem is an extension of a theorem by the second named
author [7] (see also [5]) from one-dimensional to two-dimensional
Fourier series.

THEOREM 1. If feC,pyra, and y, 3, p>0, then

lip
| (fp)n—éf{A,Aé ) A?n“JAZ‘i—[EJ-k(f)]”} . (62

mn j=0 k=0
The particular case y =0 =1 was announced by Gogoladze [1].

We refer to the extension of the classical Jackson theorem to continuous
functions in two variables.

ProrosITION 1. If f€ Copyap, then

Bt =0 on(fiog ) rons (A )b 09

Theorem 1 and Proposition 1 yield the following.
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CoroLLarY 1. IffeZ(a, B), a. f(0, 1], and 7, 6. p>0, then

e

{
m+1)* n+1?5}
if ap<land3p<l,

[log(m +2)]'* I }
(m+ 1) {n+ 13"

if up=1and fp<l,

i
4
{[log(iﬂ-k )" "+ [log(n + 1)]1;,,}
At
ol
o

(m+1)te (n+1)b"

e =L 34
VH2(f o)l = < P Bp (34)

i
m+1)”" n+133%
if ¢D>1andﬁp<l

, Hog(n+2) )13

(m+1) ot (n+ 1)'7
if ozp>1ana’pp: )

{ ]
m4+1)'? n+1)"p;
if ap>1and Bp> .

¢

The three remaining cases, ap<1 and fp=1, ap<1 and fp>1, and
ap=1and fp> 1, are the symmetric counterparts of (3.4)(i1), (iv), and (v},
respectively.

The approximation rates in (3.4) are the best possible. To go into details,
denote by {A(n): n=0, 1,..} an arbitrary sequence of positive numbers
converging to zero.

PROPOSITION 2. There exist functions f= f, € Lip(a, 1}, 0 <a <1, such
that for all y, 8, p>0, the estimates

( 1 K
0{(m+1}a}+6{}“(n)} Lf OCP<L
2)]'”
”j’fﬂf"”o’o)ﬁ0{%}%{&(’1)} ;oap=1. (35
1 .
) et ioap>1

cannot hold,



28 MORICZ AND SHI

These easily follow from the corresponding counterexamples constructed
by Leindler [2, 3] in the case of one-dimensional Fourier series.

Remark 2. (i) By (3.3)-(3.5) we can see that for feZ(a,f),
\H?” (f, p)| has the same order of magnitude as E,(f) does if
max{op, fp} <1, while the order of [|H7’(f, p)ll becomes worse than that
of E,..{f) if max{ap, Bp}=>1.

(ii) A trivial consequence of (3.1) and (3.2) is that if '€ C,,. 5, and
y, 6 >0, then

_ 1 omo :
TEN=0]n Y Ak,

m‘tn j=0 k=0

A comparison of Corollaryl and [6, Theorem 3] shows that for
feZ(a, B) the order of |H? (f, 1) is not worse than that of I72(f)
including the cases where max{«, §} = 1.

However, this phenomenon is no longer true if we consider approxima-
tion to the conjugate functions. For instance, for f € Lip(1, B) the order
of 77 (F19) is better than that of |H? (719 1)|. (See Remark 3 in

Section 4 below.)

(iii) Similarly to the one-dimensional case, generally speaking there
is no difference between the classes Lip(a, f) and Z(«, 8) as to the order of

15 5.(f P

4. APPLICATION: APPROXIMATION BY CONJUGATE SERIES

The following auxiliary result proved in {6] plays a key role in this
Section.

Lemva A, If feZ(o, BY and O <o, f<1, then
s (T, 8) = 0{5%},

. . 1
w, (fU0,8)=0 {oﬁ log 5},

0y (JOD, 5) =0 {5“ log§}

Now combining Theorem | and Lemma A yields the following two
corollaries.
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CoroLLARY 2. If feZ(a, ), o, B0, 1], and v, 6, p> 0. then

/ ~

0 1 +log(n+4}¥
(m+1)*" (n+1)F ]

if ap<landfp<l,

[log(m +2)1'* log(zz+2}}

¢
(m4+1)'7 PRy

if ap—-} and Bp <1,
“H",,,(]“ o ” = { [log(n +2)]lp+ Up} {4.1)

(m+1)°‘ {(n+ 1317

if ap<land Bp=1,

[log(m+2)]1"" [log(n+2)]""* %)
(m+1)'" (n+ 1)t 1

if ap=pp=1

In the cases where max{ap, fp} > 1, we have estimates analogous to those
in (3.4)(iv), (v), and (vi). The same remark pertains to Corollary 3 below.
Furthermore, the corresponding estimates for (H, FOU 9| are the
symmetric counterparts of those in (4.1).

CoroLLARY 3. If feZ(a, B), o, f€(0,1], and +, 3, p>0, then

@{log(nz+2) log(n+2)$
{(m+ 1) (n+1)%
if ap<land fp<i,
C({[log(ifrH—z)}“’*“’” iog(n+2)}
(m+1)'r {n+13#
if ap=1and fp<]l,
« {[log(rrH-Z)](““"’+ [log(n+2)]“’+”"’}
(m+1)'"7 (n+ 1%
if ap=pp=1.

[T p) =

IP'IVI

Now we turn to the question of whether the approximation rates in
Corollaries 2 and 3 are the best possible. Here [A(n)]} again means an
arbitrary sequence of positive numbers converging te zero.
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PrOPOSITION 3. There exist functions [ = f, e Lip(a, 1), O <a <1, such
thar for v, 8, p>0, the estimates

1

[log(m +2)]"
"{ (m+ D)7

Hp (7%, p,0,0)=

mn

(4.3)
}4—(9{2(11)} if ap=1

cannot hold.

Furthermore, there exist functions f = fz e Lip(1, ), 0< <1, such that
for v, 6>0 and p = 1, the estimates

@{Mm)}+o{l‘zg—:’f%2%} i pp<l,
H (7", p,0,0)= D” (n+ DT (44)
Lﬂ{l(nz)}—l—o{——o—%l——} if p=p=1

cannot hold.

In fact, (4.3) is identical with (3.5)(i) and (ii) applied for 7% in place
of f, while (4.4) follows from [6, Theorem 6] via (3.1) and Hélder’s
inequality. In the cases where ap>1 or fp>1, we have counterexamples
analogous to those in (3.5)(iii). The same remark applies to Proposition 4
below.

The only rates in (4.1) we are unable to prove to be the best possible are
the second halves of (iii) and (iv) for 0<f<1 and Sp=1.

Conjecture 1. There exist functions f'= f; € Lip(1, ), 0<f <1, such
that for y, >0 and p=1/8, the estimate

min

HP (719, . 0,0) = 01 i(m)} +0 {[log(n+2)]<p+wp} “s)

(n+ 137"
cannot hold.

Clearly, (4.5) for f=1 coincides with (4.4}(ii).

PrOPOSITION 4. There exist functions f = f,eLip(a, 1), O <a< 1, such
that for y, >0 and 1 < p < 1/a, the estimate

¥ (L) _ log(m +2)
H? (T ,p,O,O)—o{——~—(m+1)a}+@{l(n)} (4.6)

cannot hold.
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Indeed, (4.6) follows from [6, Theorem 7] via (3.1} and Holder’s
inequality.
According to Proposition 4, the rates in (4.2){i) and in the second half
of (4.2)(ii) are the best possible. In the cases where xp=1 or fip=1 we
formulate the following.

Conjecture 2. There exist functions f=f, eLip{x 1), O0<x<i, such
that for y, 0 >0 and p= /o, the estimate

- . log{m + 2)3t#+ 17
H;'nn(j(l’lia P- 090)205[ g(l?1+1)):}lp f+d’{;(n”

cannot hold.

Remark 3. A comparison with the results of [6] shows that for
f eLip(a, B), |H ;,‘1’,, (Ff49 1) has the same order of magnitude as

7 (F42) only in the cases of (4.1)(i) and (iii), that is when a< 1.
Furthermore, for feLip(a, B), |H?(F"*, 1)] has the same order as
T (741 only in the cases of (4.2)(i) and of the second half of (4.2)(ii).
that is when max{a, §} < 1. Otherwise (ie., where a =1 or max{a, 8} =1,
respectively), the order of [|[H (-, 1)|| is worse than that of 7

*’)1'1( ’

5. ANOTHER STRONG APPROXIMATION OPERATOR

Analogous results can be proved for the operator

1
Kﬁ”ﬂhﬂﬂ={r~——a:Tsz Z (j+1y

j=0 k=0

x (k+1)° 7 sulfy % 3) = £, 07

1p

N 2

THEOREM 2. If fe€C,, 5, and v, 8, p>0, then

w) _ 1 = ¥’11 . y—
KRR = { s Y G+

=0 k=0
< (k417 [E,umﬂ} (

This is an extension of a result of Leindler (see [2, 4]) from one-dimen-
sional to two-dimensional Fourier series.

On the basis of Theorem 2 and Proposition 1 we can deduce conseguen-
ces similar to Corollaries 2-4 and the rates obtained arc also the best
possible in the cases indicated in Propositions 2-4.

Ui

Ny

640 61 1-3
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6. AUXILIARY RESULTS

We begin with a lemma of Leindler (2] for one-dimensional Fourier
series. Given an integrable function g in one variable, we denote by s;(g, x)
the symmetric partial sums of the Fourier series of g, where j=0, 1, ...

LemMA B. IfgeC,, and p>0, then

[ -

depends only on p.

=0{lzgll},

¥ st

where
We extend this to two-dimensional Fourier series as follows.

LemMa 1. If feC,, 0, and p>0, then

ZP = Zp(fs m, n)
Hm }ZO kZO 835 %, )] }
= {71, o)

where “0” depends only on p.

Proof. Since X, is nondecreasing in p (for fixed f, m, n), we may assume
that p 2 2. We put

I, = {u|ul <1/(m+1)}, J,={v: o] <Y(m+1)},

and for their complements to [ —n, n]
ClL,={w1/(m+1)<|u| <}, CJ,={v:l(n+1)<|v|<m}.

We split the double integral in Representation (1.3) as follows:

su(fs X, 1) 2;15 {Lm L" + ,[Im e, + L,m JJ,, * JCIM fCJ.,}

X f(x+u, y+0) D;(u) D(v) du do. (6.2)

Denote by XV, 212, X and XV the corresponding quantities defined
analogously to (6 1) by subst1tut1ng the subintegrals in (6.2) for s,(f, x, ).
For exampile,

J. Jf¥+u y+v)

Im

1y _ 1 “
4 _”{(m+1)(n+l)jzo ot

p}lp

x D(u) D, (v) du dv
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We are going to show that the order of magnitude of each X is
¢l fiiy. First, using the trivial inequalities

ID(u)l <j+1 and 1D (v} <k+1, (63)
we get
“f” 1 moa . }l'ﬁ
( < : Y 1\/) 1{ 1 E
S T e T By, U e
= (64

Second, by Fubini’s theorem

E ) S S S
oS {(”H-l) l1+1)]zo kzo< 3 * . | D ()] du
[ |\\F Ll’[
X J flx+u, y+v)Dk(p)dvU } ]
o @,

Then we apply Jensen’s inequality (see, e.g., {9, Vol. L. p. 247) to the inner
integral to obtain

m

{ \
(2)\ o ) 2
= <ll{(m+1)n+1) z Z (n | Dju)l )

i=0 £=0

p—i

X%J- ID;{u)| du

m

(‘H flx+u, y+r) k(u\afaDp}lP

Next by (6.3)(i) and Lemma B, we can conciude that

x5 \“{ (—[ (j+1)du)p_ll( U+ 1) du

I’" Tt‘[ﬂl
E
n+1k:0 T
”m

1 L)
<O fIS {W Z (j+13”1

J. flx+u, y+v)D v}dvl)p}lp“
CJy ’

X

=C{IfIy (63)

Third, we can similarly derive that

E=e{if1} (66)
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Fourth, using the representation
sin ju 1
D(u)y=——"—"— CcoS
) = (12w T 2 S

and an analogous one for D,(v), we can estimate as follows:

e 2 I (w

b
)

(4)

f J fix+u, y+v)
Cly “CJy

X & €os ju cos kv du dv

m

-

+ .
‘{(m+1)n+1)] 0 k= ( Clm Cln Sl y+o)
" cos sin kv )p Lip
M tan(1/2y0
1 m 1
“{(m—f—l (n+1) <—2' f(\+ll y+v)
sm]u py lip
~ k )
2t?111(1/2)u2coS vdu dL) }
1
’Hm-i-l n+1)j L O(‘z cr Ljnf(H-u y+v)
sin ju sin kv

du dv

Yy Lip
* Stan(1/2)u 2tan(1/2)0 ) }
=L 20 3D L 3 say.
(i) Clearly,
ZEOLIA.
(ii) By Jensen’s inequality,

(42) 1 m " ( @
“r ”{('"-1—1)(fl+1)Z L lezn

j=0 k=0
1.

in k
—J Slx+u y+v) S Ay

X =
n Jey, 2tan(1/2)v

Py tip
dv) }
1 m n . du p—1
< ”{(m +1)(n + 1),-‘30 P <Jam ﬂ)
Py Lip
dv) } )

du (1

m

sin kv
2tan{1/2)v

[ ficturso
Sy
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(%)
L

Since p=2 we can apply the Hausdorff-Young inequality (see, e.g. 9,
Vol. I, p. 101]) to obtain

1 oo du
2 - it
|{m+1)(n+1) Z (C,,-”,Zfr

X{Jﬂ Jf(«‘»-f—lf, _T'-{-z,),!‘?dy}ﬂ fl?lp
CJy !2tan(1/2)ls|‘/

:

where the conjugate exponent g is defined by 1/p+ 1/g=1. Hence

"

(4'7, { { » do\* ¢ Le
Z i(m-f—l)(n-l—l Z C”Hj“ l( ' \ }

im0/
{ 7y tp
<{C—;“—£”1—’ (n+1)""“""f} =C0f (6.9}

(iii) Analogously,
W =o{|f1}. (6.1G)

(iv) Finally, applying the Hausdorff-Young inequality extended to
two-dimensional Fourier series, we find that

2144) "{ 1
S lm+ D(n+1)

i (flx+u, y+o)* }pq) to
¢ ) du de ]
P {L{m chﬂ |4tan(1/2) u tan(1;2)r|¢ U dr ‘

g{ e{isiey (4j‘” " du dv »‘"’}”’
(m+1)(n+1) Len+1) ey w07 )

=0{If1}, (6.11

in a similar manner as in the case of (ii).
Putting (6.7)-(6.11) together yields

W =0{|f]}- {6.12)

Combining (6.2), (6.4)-(6.6), and (6.12) furnishes (6.1}, which was to be
proved.

The following consequence of Lemma 1 plays a key role in the proofs of
Theorems 1 and 2.
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LEMMA 2. If feCypyoy and p>0, then for m, n=1, 2, ...

J=m

1 2n—1 ] 1/p)) -
[H; T bl =S} | = e(Eatn)
k=n

and

”soo(f; X, y)‘f(xv y)” = (O{Eoo(f)}’
s depend only on p.

LYt

where the

1 2m—1 2n—1 1/p
Z Z l k f’ X, y)_f(xa ,V)|P = (/O{Emn(f)}s
mn jem

- 1 2m—1 1/p
{;i Z isjo(f; X, .}‘) *f(xa ),)'p} = @{Emo(f)}a

(6.13)

(6.14)

(6.15)

(6.16)

Proof. Denote by t}.(f, x, y) the trigonometric polynomial of degree

< m with respect to x and of degree <n with respect to y such that

Hf(xa y) - trﬂ:m(.f; X, y)“ = Emn(f)

and denote by X *(f, m, n) the left-hand side of (6.13).
If p=1, then by Holder’s inequality and (6.1),

ZXfim n) <27 (f—r1x (f), 2m~1,2n~1)

2m—1 2n—1 1/p
+“{% 2 Z 1S, X 3) = f(x, y)l"}

j=m

<201 f — 15.(f) u}+{ '"z "z [E kf)]}'p

=O{E,.(f)}
proving (6.13).
IfO0< p<1, then

L25(fsmn)) <4LZ(f — 1h(f), 2m—1,2n—1)]”

|

which iraplies (6.13) in the same way as above.

2m—1 2n—1

j=

~f(x, y)|?

The proofs of (6.14)-(6.16) follow a similar pattern, so we omit them.
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7. PROOFS OF THEOREMS 1 AND 2

The two proofs are much alike, but the proof of Theorem 2 is technically
simpler.

Proof of Theorem 2. We may assume m, # > 1. Otherwise, Theorem 2
reduces to the corresponding one-dimensional result. In the sequel, let ¢
and r be positive integers such that

29<m+ 1< 29! and <+ 1<27h

We distinguish four cases according to y2=! or O0<y<1 and 621 or
0<d<l.

Case 1. 7y, > 1. Then both (j+ 1)’ ! and (k+1)°~! are nondecreas-
ing. An elementary estimation and Lemma 2 give that

(m+ 1y (n+ 1Y [K?(f, p)]”

mn

q+1 2
<Isul )= F17+ Z 20708 N sl )= f17
I= j=2-1
r+l ‘ 21
+ 207N () - f17
=1 k=201
g+1 r41 2y 2
+Z Z gt =iy =0T Z Z isjk{f}_flp
f=1 T=1 j=20"1 k=2l-1
g+1 r+1 g+1 r+1 \'
=(({ o T2 Y VEG 42 Y 27ELya+4 Y Y 2027EY oy,
/=1 =1 =1 I=1 J
(7.1}

where f=f(x, y), su(f) =53, x, ¥), Ey = Ep(f), etc.
On the other hand, using the nonincreasing property of E, in j and £,
an easy calculation yields

m n

YY)y k+ T E,

J=0 k=0

q S
2 Ef 4277 Y 2MEL 4277 > 29E?

/=1 /=1
+2772- Z Z 2198, . (7.2}
I=1 T=1

Comparing the right-hand sides of (7.1) and (7.2) results in (5.1), which
was to be proved.
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Case 2. 0<7y, d<1. Then both (j+1)’~* and (k+1)° "' are non-
increasing. Similarly to (7.1), we can conclude that

(m+1) (n+1)° [K3(f, p)]”
g+1 _r+1
=0 {Ei,’o+2"" Y 2VE5-i,+270 3 2%ES

I=1 I=1

A r+1 .
+27727° Z Z 2>'[207E[2’1‘1,274}, (7.3)

I=1 T=1

and similarly to (7.2),

n 1 q
Y G+ k+ 1) ELZE”, +3 Y 2YE%, + Z 2°E"D

j=0 k=0 1—1 1=1

1 q
+= Y 2 2129E S, o1, (7.4)
4 =1 T=1

™3

Now, it suffices to employ the monotonicity property of E;(f) in order to
derive (5.1) on the basis of (7.3) and (7.4).

Case 3. y=zland O0<édé< L
Case 4. O<y<land 6=1.

In the last two cases we can combine the estimation techniques applied
in Cases (i) and (ii). We do not enter into details.

Proof of Theorem 1. This goes along essentially the same lines as the
proof of Theorem 2. We have to keep in mind that for y > —1 there exist
two positive constants K, and K, depending only on y such that

Kim+1y <A’ <K,(m+1) (m=0,1,.)
(see, e.g, [9, Vol. L, p. 777).
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